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1 Introduction

This document is the final report for project FA 9550-05-1-0439, funded
by AFOSR through the DEPSCOR program. The program manager was
Arje Nachman. The research was to investigate the dynamics of nonlinear
waves and other flows in the vicinity of the tropopause using theoretical and
computational methods. The project was very successful, and has resulted
in many new and important results. The primary results are documented
below.

A number of students in various capacities are now affiliated with the
project. They are listed below:

Name Degree
Nick Jenkins MS
Bob Arredondo PhD (part-time)
Surupa Shaw PhD
Zhexuan Zhang PhD
Imani Lugalla BS
Travis Gline BS

In addition, Dr. Iordanka Panayotova, previously a postdoc at AFRL at
Hanscom, now on the faculty at Old Dominion University, is collaborating
with the PI on the theoretical work.

Project funds and matching funds were used for two months of salary for
the PI during the summer for 2005, 2006, and 2007, which expended all
funds originally allocated for PI salary. Project funds supported two months
of salary for the consultant, T. R. Akylas, expending all of this part of the
original budget.

A one-year no-cost extension was requested and awarded. This extension
of time is necessary due mostly to timing difficulties associated with the
graduate students.
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2 Boussinesq theory of waves interacting with

the tropopause

Waves impinging on an idealized two-layer Boussinesq model of the tropopause
region are treated with weakly nonlinear theory. The results have appeared
recently in The Journal of Atmospheric Sciences 1.

The waves are assumed to be periodic in the horizontal and propagate
with permanent form. Internal waves of permanent form have been treated
previously, most notably by Thorpe [30] and Yih [36]. Yih [36] showed that
the background density profile must be adjusted to account for a nonlinear
shift in the mean streamline. The correction to the background density
results in a second-order correction to the wavespeed, analogous to Stokesian
waves [28]. However, Yih [36] showed that the correction for internal waves
is negative, meaning that larger amplitude waves travel slower, opposite to
that for free-surface waves. Thorpe [30] and Yih [36] both considered a
configuration where the flow is bounded on top by a rigid lid, resulting in
complete reflection of the internal waves. The value of correction to the
wavespeed depends strongly on the wave reflection. Partial wave reflection
occurs in the lower layer of the configuration considered below, also resulting
in an important correction to the wavespeed. The present results show that
this correction is also negative.

The waves are made steady by choosing a coordinate system that moves
horizontally with the wave speed [also used by Stokes [28], Long [17], and
Yih [36]]. The governing equations are then reduced to Long’s equation [17].
For the case considered here of Boussinesq flow with constant Brunt-Väisälä
frequency (in each layer) and no upstream shear, Long’s model becomes
linear, and is given by

∇2δ + κ2δ = 0, (1)

where δ is the vertical displacement of streamlines from an upstream or
background state, and κ is a constant. At first glance, it would seem that
the solution to the two layer problem considered here is merely the sinusoidal
solution

δ ∝ sinmx sinnz, (2)

where m and n are constants unique to each layer. This solution does satisfy
(1) exactly, but only meets the boundary conditions at the mean interface.

1J. McHugh, Journal of the Atmospheric Sciences, 66, pp. 1845-1855, 2009.
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An accurate nonlinear solution must meet the boundary conditions at the
actual interfacial position, rather than the mean, which is not known before-
hand. As a result, in a multilayer fluid (2) is only a linear solution, accurate
for infinitesimal wave amplitudes only. Important nonlinear effects result
when the displacement of the interface is included. Further nonlinear effects
result when the background density profile is adjusted to match the average
density profile in the presence of waves.

It is shown here that the nonlinear effects at the interface result in higher
frequency internal waves propagating throughout the fluid. These waves are
harmonic to the incident wave only at the interface, where they contribute
to steepen the wave. Away from the interface, the harmonics propagate at
an angle to the horizontal that is different than the incident wave; the in-
terface causes the harmonics to be scattered. For some parameter values,
the linear solution gives an evanescent wave in the upper layer, meaning the
vertical structure is not oscillatory. For all parameter values, the higher har-
monic waves in both layers become evanescent when the effective frequency
is greater than the Brunt-Väisälä frequency.

2.1 Basic equations

The flow is assumed to be incompressible, inviscid, and two-dimensional.
Stratification is present due to a non-diffusing quantity. The flow is then
governed by the Euler equations, the continuity equation, and the equation
of incompressibility. Long [17] reduced these equations to a form now known
as Long’s model. Long’s model assumes a horizontal reference flow, u0(z0),
with a density profile, ρ0(z0), where z0 is the vertical position in the reference
flow. The streamlines may be deflected by a disturbance, often considered
to be a barrier to the flow, such as a mountain. The derivation of Long’s
equation is given by Long [17], and will not be repeated here. The resulting
equation is

∇2δ +
1

2

1

q

dq

dz

[
2
∂δ

∂z
− (∇δ)2]+

N2

u2
0

δ = 0, (3)

where
δ = z − z0, (4)

is the streamline displacement, and

N2 = − g

ρ0

∂ρ0

∂z0

, (5)
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q = ρ0u
2
0. (6)

If the Boussinesq approximation is assumed and u0 is taken to be constant,
then Long’s equation reduces to

∇2δ +
gβ

u2
0

δ = 0, (7)

where

β = − 1

ρ0

∂ρ0

∂z0

. (8)

The mean density profile is chosen to be continuous, but have a discon-
tinuous first derivative, such that the fluid exists in two semi-infinite layers,
each layer having a unique value of the buoyancy frequency. The kinematic
interfacial condition is that the normal velocity must be continuous across
the interface. The dynamic interfacial condition is that the pressure must
be continuous across the interface. As stated by Durran [8], these conditions
can be met by choosing δ to obey

δ1 = δ2 (9)

and
δ1z = δ2z (10)

at the interface, where δ1 is the streamline displacement field in the lower
layer, and δ2 for the upper layer. A complete derivation of these conditions is
provided in the appendix. Note that these are still the fully nonlinear inter-
facial conditions, and not just the linear condition. Of course, the condition
must still be met on the actual interfacial position, rather than the mean
interfacial position, a feature that results in the important nonlinear effects.

The vertical position of the origin of the coordinate system is chosen to be
at the mean position of the interface, so that the streamline that corresponds
to the interface is given by z0 = 0. The displacement of the interface is then
determined by

δ
(
x, z
)

= z. (11)

Inverting this expression to obtain the interfacial shape, even for relatively
simple expressions for δ, is nontrivial. Assume such a solution to (11) is

z = η
(
x
)
. (12)
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Note that δ
(
x, 0
)

is not the same as η
(
x
)
, except in the linear case. The

interfacial displacement, η, is related to the velocity field by the familiar
kinematic interfacial condition for each layer:

ηt +
(
1− δz

)
ηx = δx (13)

on the interface.
Expand (9), (10), and (13) in a Taylor series about the mean position of

the interface, and insert into the interfacial conditions to obtain

δ1

∣∣∣∣
z=0

+δ1z

∣∣∣∣
z=0

η+
1

2
δ1zz

∣∣∣∣
z=0

η2+· · · = δ2

∣∣∣∣
z=0

+δ2z

∣∣∣∣
z=0

η+
1

2
δ2zz

∣∣∣∣
z=0

η2+· · · (14)

δ1z

∣∣∣∣
z=0

+δ1zz

∣∣∣∣
z=0

η+
1

2
δ1zzz

∣∣∣∣
z=0

η2+· · · = δ2z

∣∣∣∣
z=0

+δ2zz

∣∣∣∣
z=0

η+
1

2
δ2zzz

∣∣∣∣
z=0

η2+· · ·
(15)

ηt+

(
1−
[
δ1z

∣∣∣∣
z=0

+ δ1zz

∣∣∣∣
z=0

η+ · · ·
])
ηx =

(
δ1x

∣∣∣∣
z=0

+ δ1xz

∣∣∣∣
z=0

η+ · · ·
)

(16)

ηt+

(
1−
[
δ2z

∣∣∣∣
z=0

+ δ2zz

∣∣∣∣
z=0

η+ · · ·
])
ηx =

(
δ2x

∣∣∣∣
z=0

+ δ2xz

∣∣∣∣
z=0

η+ · · ·
)

(17)

2.2 Finite amplitude waves

The governing equation in each layer is the linear Long’s equation,

∇2δ1 +
gβ1

u2
1

δ1 = 0, (18)

∇2δ2 +
gβ2

u2
2

δ2 = 0, (19)

where u1 and u2 are background velocities for each layer. Expand δ in a
power series in ε, the ratio of the wave amplitude to horizontal wavelength:

δ1 = εδ11 + ε2δ12 + ε3δ13 + · · · , (20)

and similar expressions for δ2 and η. Note the subscript convention; the first
index indicates the layer, while the second indicates the order.

A coordinate system is chosen to be moving with the wavespeed (as yet
undetermined) to make the flow steady, and the wavespeed must also be
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expanded in the wave amplitude to suppress secular terms. Both features
are treated with

u1 = c10

[
1 + εc11 + ε2c12 + · · · ] . (21)

u2 = c20

[
1 + εc21 + ε2c22 + · · · ] . (22)

Ultimately, u1 and u2 must be equal to the wavespeed and to each other, so
that the flow is steady. However it is convenient to maintain them separately
for now, and then ultimately equate them to determine the wavenumber in
the upper layer.

To expedite the correction to the background density profile, β is also
expanded in the wave amplitude:

β1 = β10

[
1 + εβ11 + ε2β12 · · ·

]
, (23)

and a similar expression for β2.
The first order governing equations are

∇2δ11 +
gβ10

c210

δ11 = 0, (24)

∇2δ21 +
gβ20

c220

δ21 = 0, (25)

and the interfacial conditions are

δ11 = δ21, (26)

δ11z = δ21z (27)

η1x = δ11x = δ21x, (28)

on z = 0.
The solution to (24-28) is chosen to be an upwardly propagating incident

wave in the bottom layer. The linear interfacial conditions require a reflected
in the lower layer and a transmitting wave in the upper layer:

δ11 = Aeimx
[
e−in1z +

(
n1 − n2

n1 + n2

)
ein1z

]
+A∗e−imx

[
ein1z +

(
n1 − n2

n1 + n2

)
e−in1z

]
(29)
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δ21 =

(
2n1

n1 + n2

)[
Aei
(
mx−n2z

)
+ A∗e−i

(
mx−n2z

)]
, (30)

where n1 and n2 are the vertical wavenumbers in the lower and upper layers,
respectively, and A∗ is the complex conjugate of A. Note that (29) and (30)
are chosen to satisfy a radiation condition in each layer.

The corresponding displacement of the interface is

η1 =

[
2n1

n1 + n2

][
Aeimx − A∗e−imx

]
. (31)

The dispersion relations are

c210 =
gβ10

m2 + n2
1

, (32)

c220 =
gβ20

m2 + n2
2

. (33)

The dispersion relation for the upper layer must give the same wave speed,
and share the same horizontal wavenumber, m, as the lower layer, which de-
termines the vertical wavenumber in the upper layer. The first approximation
to this vertical wavenumber is

n2
2 = m2

[
β20

β10

− 1

]
+ n2

1

β20

β10

. (34)

2.2.1 Second order

The second-order governing equations are

∇2δ12 +
gβ10

c210

δ12 = −2c11∇2δ11 − gβ11

c210

δ11, (35)

∇2δ22 +
gβ20

c210

δ22 = −2c21∇2δ21 − gβ21

c220

δ21, (36)

Before proceeding further, the correction to the upstream condition must
be considered to determine β11 and β21. This is achieved as described in the
next section. The analysis shows that there is no correction at this order,
matching the conclusions of Yih [36], and the details will not be given:

β11 = β21 = 0. (37)
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The only secular term left in (24) and (25) is suppressed by choosing c11 =
c21 = 0, making the second order equations homogeneous.

The second-order interfacial conditions are

δ12 − δ22 =

[
δ21z − δ11z

]
η1, (38)

δ12z − δ22z =

[
δ21zz − δ11zz

]
η1, (39)

η2x − δ12x =
∂

∂x

(
δ11zη1

)
, (40)

η2x − δ22x =
∂

∂x

(
δ21zη1

)
, (41)

on z = 0. Using (27) reduces (38) to

δ12 − δ22 = 0, (42)

on z = 0. Inserting (29), (30), and (31) into (39) then simplifying gives

δ12z − δ22z =

[
2n1

n1 + n2

]2(
n2

1 − n2
2

)[
A2ei2mx + A∗2e−i2mx + 2AA∗

]
(43)

on z = 0. The forcing terms in (43) are not resonant, and require a solution
of the form

δ12 = B sin (2mx+ n12z) + C sin (γ12z), (44)

where B and C still need to be determined. The vertical wavenumber in
(44), n12, is not determined by the interfacial conditions, and is chosen to
satisfy the governing equations in the bottom layer, reflected in the dispersion
relation for the bottom layer:

n2
12 = n2

1 − 3m2. (45)

The term C sin (γ12z) balances the constant in (43), and represents a wave-
induced mean flow, but driven by the interfacial conditions. The governing
equation determines the exponent:

γ2
12 =

gβ10

c210

= m2 + n2
1. (46)
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Similarly in the upper layer,

δ22 = B sin (2mx− n22z) + C sin (γ22z), (47)

n2
22 = n2

2 − 3m2, (48)

γ2
22 =

gβ20

c220

, (49)

where the coefficients have already been chosen to satisfy (42). Note that
the negative sign in front of n22 is chosen in the upper layer to obtain an
upwardly propagating harmonic, meeting the radiation condition at the top.

Equation (39) determines B and C:

B = −4n2
1

n1 − n2

n1 + n2

A2, (50)

C =

[
2n1

n1 + n2

]2
n2

1 − n2
2

γ12 + γ22

2AA∗. (51)

2.2.2 Correction to β

The second-order solution must match the background conditions. This is
achieved using the method of Yih [36]. The definition of δ is rearranged to
obtain

z = z0 + δ
(
x, z
)
. (52)

The inversion of this equation is

z = η
(
x, ρ
)
. (53)

An average over one wave period of (53) is the average displacement of a line
of constant density in the presence of waves. A wave of permanent form must
have this vertical displacement equal to zero. If it is not, then the upstream
density profile must be adjusted. This adjustment is determined using

1

ρ0

dρ

dz0

=
1

ρ0

dρ

dη

dη

dz0

= −β dη
dz0

. (54)

In practice, (52) is inverted using the method of successive approximations
for each layer, as in Yih [36] and Stokes [28]. The final result is

β21 = 4AA∗n2
1

(
n1 − n2

n1 + n2

)(
γ12

γ12 + γ22

cos γ12z0 − 2 cos 2n1z0

)
, (55)
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β22 = 0. (56)

Note that the correction for the upper layer is zero because there is no reflec-
tion, only the incident wave. The correction for the lower layer is non-zero
because of the interaction between the incident wave and its reflection from
the interface.

2.2.3 Third order

The third-order solution is pursued just far enough to demonstrate uniform
validity, and thereby determine the second-order correction to the wavespeed.
The third-order governing equations are

∇2δ13 +
gβ10

c20
δ13 = −2c12∇2δ11 − gβ12

c210

δ11, (57)

∇2δ23 +
gβ20

c20
δ23 = −2c22∇2δ21 − gβ22

c220

δ21. (58)

The third-order interfacial conditions are

δ13 − δ23 =

[
δ21z − δ11z

]
η2 +

[
δ22z − δ12z

]
η1 +

1

2

[
δ21zz − δ11zz

]
η2

1, (59)

δ13z−δ23z =

[
δ21zz−δ11zz

]
η2 +

[
δ22zz−δ12zz

]
η1 +

1

2

[
δ21zzz−δ11zzz

]
η2

1, (60)

η3t + η3x − δ13x =
∂

∂x

(
δ11zη2 + δ12zη1 +

1

2
δ11zzη

2
1

)
, (61)

η3t + η3x − δ23x =
∂

∂x

(
δ21zη2 + δ22zη1 +

1

2
δ21zzη

2
1

)
(62)

on z = 0.
The forcing terms in the interfacial conditions are not resonant, nor will

they be at any order, and hence they do not contribute to the second-order
correction to the wave-speed. This is because the wave speed is not deter-
mined by the interfacial conditions, as interfacial waves do not exist when the
density is continuous. The interfacial forcing terms are still important how-
ever, as they result in scattered harmonics of the incident waves, discussed
in the next section.

The forcing terms in the governing equation for the lower layer are secular,
as a result of the nonzero value of β12. These terms are suppressed, again
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following Yih [36], by multiplication with the expression for δ1 in the lower
layer, and integration over a single wave period. The resulting second-order
correction to the wavespeed in the lower layer is

c12 = 2n2
1AA

∗

{(
n1 − n2

n1 + n2

)(
1

γ12 + γ22

)
sin 2πγ12

n1

2π
n1

+
1

2

(
(n1 − n2)

2

n2
1 + n2

2

)(
γ12

γ12 + γ22

)[
− 2 +

(
1

2n1 − γ12

)
sin (2n1 − γ12)

2π
n1

2π
n1

+

(
1

2n1 + γ12

)
sin (2n1 + γ12)

2π
n1

2π
n1

]}
, (63)

while for the upper layer,
c22 = 0. (64)

The final stage is to determine n2, governed by the equality of wave-speeds
in the two layers. Setting u1 = u2 in (21) and (22) and keeping terms to
second order results in

gβ10

m2 + n2
1

[
1 + ε2c12

]
=

gβ20

m2 + n2
2

(65)

This expression along with (63) represents two coupled algebraic expressions
for n2 and c12, which are determined numerically.

2.3 Discussion

Internal waves only exist for frequencies that are less than the buoyancy
frequency, N = gβ, as can be shown from the dispersion relation. Hence the
incident waves in the lower layer must have a frequency less than gβ10. The
buoyancy frequency above the interface may be larger or smaller than below:
the buoyancy frequency at the tropopause and the mesopause increases with
the vertical coordinate, while the buoyancy frequency at the stratopause
decreases.

For the case where N2 < N1 (the stratopause), it is possible for the fre-
quency of the linear incident wave to be greater than N2. The linear trans-
mitted wave will be evanescent in the upper layer, with no vertical oscillations
in the upper layer.
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For the case where N2 > N1 (the tropopause and mesopause), the linear in-
cident wave creates a wave in the upper layer that oscillates with the vertical.
However, the harmonics that are created at the interface may be evanescent
in either layer. The harmonic may be considered to have an effective fre-
quency; for example, the second harmonic in the lower layer would have the
effective frequency, (

2m√
(2m)2 + n2

12

)
N1. (66)

If the effective frequency of a harmonic is greater than the Brunt-Väisälä
frequency in either layer, then the harmonic will be evanescent in that layer.
This transition occurs when the vertical wavenumber becomes purely imag-
inary, for example, if n2

12 > 0 in (45), then n12 is real and the harmonic is
oscillatory. If n2

12 < 0, then the behavior is evanescent.
Away from the interface, the higher harmonics with vertical oscillation will

not coincide with the primary mode. For example, the incident waves in the
lower layer are traveling waves with wavenumbers m and n1, as discussed
previously. The lines of constant phase for this wave make an angle, θ1, to
the horizontal:

θ1 = arccos
m√

m2 + n2
1

. (67)

The second-order solution requires a harmonic with wavenumbers 2m and
n12, where n12 is given by (45). This harmonic is a wave that makes an
angle, θ12, with the horizontal:

θ12 = arccos
2m√

(2m)2 + n2
12

= arccos
2m√
m2 + n2

1

, (68)

where (45) has been used to simplify (68). Clearly, the angle of the inci-
dent wave is different than the angle of the second-order harmonic wave; the
second-order harmonic has been scattered by the interface.

The third-order interfacial conditions will result in third-order harmonics
with a higher effective frequency than the second-order harmonic. Depending
on the parameter values of the incident wave, this frequency could be greater
than the buoyancy frequency in either layer, resulting in non-oscillatory be-
havior, and an evanescent mode. Furthermore, eventually there is a har-
monic in the Stokes expansion that will result in a harmonic frequency that
is greater than both N1 and N2, and this harmonic will be evanescent in both
layers, as will all higher harmonics.
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The deflection of the interface due to the second-order harmonics has the
same phase as the deflection of the interface due to the linear waves given by
(31), whether the harmonic is oscillatory or not. The third-order harmonic
will also have this phase. As a result, the nonlinear wave at the tropopause
behaves as a Stokes wave, where the crest is sharpened and the trough broad-
ened.

However, the behavior of the waves away from the interface is significantly
different. Only the oscillatory harmonics extend away from the interface,
and depending on the wavenumbers for the incident wave, only the first few
harmonics are likely to be oscillatory. The remainder of the harmonics will
decay exponentially in each layer. Hence a horizontal profile would consist
of the sum of only a few sinusoidal components, quite different than the
behavior at the interface.

The second-order correction to the wave-speed and the wavenumber in the
upper layer are determined by the two coupled nonlinear algebraic equations
given in (63) and (65). Values of c12 and n2 have been determined numerically
using the bisection method, and are shown in figures 2.3 and 2.3. Figure
2.3 shows that c12 is negative, meaning that larger amplitude waves travel
slower than infinitesimal waves. This result was demonstrated by Yih [36]
for internal waves bounded with rigid horizontal surfaces. The rigid surfaces
in Yih [36] cause complete wave reflection, which in turn leads to a non-
zero wave-induced mean flow and a displacement of isopycnic lines. The
present results have partial wave reflection from the interface, rather than
the complete reflection as in Yih [36]. Furthermore, there is an additional
contribution to the wave-induced mean flow as a result of the interfacial
conditions, given by the second term in (44). This interfacial mean flow
weakens the effect, but is not significant enough to overcome the effect found
by Yih [36], and hence the same mechanism that results in the negative
wavespeed correction is also at work here.
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3 DNS of waves at the tropopause

The direct numerical simulation (DNS) of waves interacting with an idealized
tropopause was treated for a variety of conditions. Waves are created beneath
the interface and allowed to impinge on the interface. The results show that
a horizontal mean flow is created at the interface that grows in strength
and finally creates a critical layer. These results have been published in
Theoretical and Computational Fluid Dynamics 2.

3.1 Governing equations

The governing equations are the anelastic equations [16, 19, 34]. The anelas-
tic equations are an approximate form of the Navier-Stokes equations where
the effects of sound wave propagation have been removed. The original
anelastic equations are flawed, and the linear solution does not match the
linear solution of the fully compressible equations. It was later shown that
the pressure term was incorrect. Bacmeister and Schoeberl [4] provide a con-
cise derivation of the corrected anelastic equations, which have been found
to accurately model atmospheric dynamics.

For large-scale waves typically found in the atmosphere, viscosity is not
important; inviscid flow is asssumed here. The inviscid anelastic equations
in two dimensions for a perfect gas atmosphere are

Du

Dt
= −∂p

∗

∂x
, (69)

Dw

Dt
= −∂p

∗

∂z
+ g

θ

θ
, (70)

Dθ

Dt
+ w

∂θ

∂z
= 0, (71)

∂ρu

∂x
+
∂ρv

∂y
= 0, (72)

where

p∗ = cpθ

(
p

p0

) R
cp

, (73)

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
, (74)

2McHugh, J. P., Theoretical and Computational Fluid Dynamics, 22, pp107-123, 2008.
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u,w are the velocity components, x, z are the components of position, θ is
the potential temperature, ρ and θ are the base state density and potential
temperature, respectively, cp is the specific heat at constant pressure, R is
the gas constant, g is the gravitational constant, p is the pressure, and p0

is a constant. Equations (69-70) are the momentum equations, (71) is the
energy equation, and (72) is the continuity equation.

3.2 The base state

The base state is governed by the perfect gas law,

p = ρRT , (75)

and the equation of static equilibrium,

dp

dz
= −ρg. (76)

Note that all base state variables are denoted by an overline. An important
base-state parameter is the Brunt-Väisälä frequency, defined as

N2 =
g

θ

dθ

dz
. (77)

A variety of base states may be considered, including cases drawn from
observations. However, the base state must satisfy the above base state
equations to be valid. Often the base state temperature is chosen, and then
the density and potential temperature are determined. The following two
relations, which are derived directly from the first law of thermodynamics
for a dry atmosphere and the definition of potential temperature [13], are
used to determine ρ and θ once T is chosen:

ρz
ρ

+
T z

T
+

g

RT
= 0, (78)

θz

θ
− T z

T
− g

cpT
= 0. (79)

The base-state temperature for the present results is chosen to be constant
in each layer, making the Brunt-Väisälä frequency constant and equal to g2

cpT
,

with a unique value in each layer. The potential temperature is given by

θ = e
gz

cpT , (80)
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where the exponent has a unique value in each layer. The pressure must
be continuous at the interface for equilibrium, and density is chosen to be
continuous. The potential temperature is also chosen to be continuous at the
interface.

Another important base state parameter is the scale height, H, which is
the thickness of a layer of gas of constant temperature over which the density
changes by the factor, e. The local value of the scale height is defined by

1

H
= −ρz

ρ
. (81)

For a constant temperature layer, the scale height is given by H = RT
g

. The
above choices result in a constant scale height throughout the domain.

3.3 The computational approach

The velocity, position, and pressure are rescaled using a length scale, L,
and a velocity scale, U . The wave forcing is chosen to have a horizontal
wavelength, λ, that is equal to the horizontal length of the domain, and this
lengthscale is chosen as the lengthscale for rescaling; L = λ. The flow is
initiated from rest; the initial mean flow is also zero. This means that the
basic state does not provide a natural velocity scale. Instead, the velocity
scale is chosen to be

√
λg. The density and potential temperature are rescaled

using their respective base-state values at the bottom of the domain (ρ0, θ0).
The dimensionless equations are

Dũ

Dt̃
= −∂p̃

∂x̃
, (82)

Dw̃

Dt̃
= −∂p̃

∂z̃
+
θ̃

θ̃
, (83)

Dθ̃

Dt̃
+ w̃

∂θ̃

∂z̃
= 0, (84)

∂ρ̃ũ

∂x̃
+
∂ρ̃ṽ

∂ỹ
= 0, (85)

where the circumflex denotes a dimensionless quantity.
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The governing equations are reduced such that the pressure, horizontal
velocity, and potential temperature are eliminated from the linear terms,
resulting in

∂2

∂t̃2

[
∇2w̃ +

∂

∂z̃

(
1

H̃
w̃

)]
+ Ñ2∇2

1w̃ =
∂

∂t̃

[
∂

∂z̃

∂Ãi
∂x̃i
−∇2Ã3

]
−∇2

1

[
B̃

θ̃

]
,

(86)
where the Ãi is the sum of the nonlinear terms for the ith momentum equa-
tion,

Ãi = ũj
∂ũi
x̃j
, (87)

B̃ is the sum of the nonlinear terms for the energy equation,

B̃ = ũj
∂θ̃

x̃j
, (88)

and

∇2
1 =

∂2

∂x̃2
. (89)

The boundary condition on the top boundary, z̃ = D
L

, where D is the height
of the domain, is w̃ = 0. Note that a damping layer is included near the top
boundary to absorb upward propagating waves, as will be discussed later.
On the bottom boundary, w̃ is the imposed forcing velocity, also discussed
later. The side boundaries are treated as periodic.

The order of (86) is reduced by introducing φ̃:

φ̃ =
∂

∂t̃

[
∇2w̃ +

∂

∂z̃

(
1

H̃
w̃

)]
−
[
∂

∂z̃

∂Ãi
∂x̃i
−∇2Ã3

]
. (90)

Equation (86) becomes

∂φ

∂t̃
+ Ñ2∇2

1w̃ = −∇2
1

[
B̃

θ̃

]
. (91)

The variable φ̃ is retained in the calculations, and w̃ and φ̃ are determined,
using (90) and (91), for each time step. Note that the nonlinear terms that
contain a temporal derivative have been carefully chosen as part of the def-
inition of φ̃. This subtle but important step allows the nonlinear terms to
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be evaluated by accurate well-known methods, such as Adams-Bashforth, to
any level of accuracy.

Equation (90) and (91), being first-order in time, may be directly integrated
over the time step, ∆t̃, to obtain[
∇2w̃ +

∂

∂z̃

(
1

H̃
w̃

)]n+1

−
[
∇2w̃ +

∂

∂z̃

(
1

H̃
w̃

)]n
+

∫ t̃n+1

t̃n
φ̃ dt̃ =

−
∫ t̃n+1

t̃n

[
∂

∂z̃

∂Ãi
∂x̃i
−∇2Ã3

]
dt̃, (92)

φ̃n+1 − φ̃n +

∫ t̃n+1

t̃n
Ñ2∇2

1w̃ dt̃ = −
∫ t̃n+1

t̃n
∇2

1

[
B̃

θ̃

]
dt̃. (93)

The integrals in the linear terms in (92) and (93) are treated implicitly with
the Crank-Nicolson method, while the nonlinear terms are treated explicitly
with the second-order Adams-Bashforth method. The result is[
∇2w̃ +

∂

∂z̃

(
1

H̃
w̃

)]n+1

−
[
∇2w̃ +

∂

∂z̃

(
1

H̃
w̃

)]n
+

[
φ̃n+1 + φ̃n

2

]
∆t̃ =

1

2

[
3

(
∂

∂z̃

∂Ãi
∂x̃i
−∇2Ã3

)n
−
(
∂

∂z̃

∂Ãi
∂x̃i
−∇2Ã3

)n−1]
∆t̃, (94)

φ̃n+1 − φ̃n + Ñ2∇2
1

[
w̃n+1 + w̃n

2

]
∆t̃ = −1

θ̃
∇2

1

[
3B̃n − B̃n−1

2

]
∆t̃. (95)

There is one remaining difficulty; both equations contain w̃ and φ̃ at the
leading time step, making them coupled. The two equations may be decou-
pled merely by eliminating φ̃n+1 algebraically, resulting in[
∇2w̃ +

∂

∂z̃

(
1

H̃
w̃

)]n+1

− ∆t̃2

4
Ñ2∇2

1w̃
n+1 =[

∇2w̃ +
∂

∂z̃

(
1

H̃
w̃

)]n
+

∆t̃2

4
Ñ2∇2

1w̃
n + ∆ t̃φ̃n

+
∆t̃

2

[
3

(
∂

∂z̃

∂Ãi
∂x̃i
−∇2Ã3

)n
−
(
∂

∂z̃

∂Ãi
∂x̃i
−∇2Ã3

)n−1]
− ∆t̃2

4

1

θ̃
∇2

1

(
3B̃n − B̃n−1

)
. (96)
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Equation (96) may be solved directly for w̃n+1. Values of φ̃n+1 may then be
determined using either (94) or (95); (95) is used in practice for efficiency.

The continuity equation is used to determine the horizontal velocity:

ũx̃ = −
[
w̃z̃ +

ρ̃z̃
ρ̃
w̃

]
. (97)

This equation is easily solved for ũn+1 once w̃n+1 is available. That leaves
only θ̃, which can be found directly from the energy equation,

θ̃n+1 − θ̃n = −∂θ̃
∂z̃

[
w̃n+1 + w̃n

2

]
∆t̃−

[
3B̃n − B̃n−1

2

]
∆t̃. (98)

The continuity equation cannot be used to determine the horizontal average
of horizontal velocity, 〈ũ〉, where the angle brackets indicate the horizontal
average, since any profile of 〈ũ〉 will satisfy continuity. Instead the horizontal
average of the horizontal momentum equation is used:

∂〈ũ〉
∂t̃

= −1

ρ̃

∂

∂z̃
〈ρ̃ũw̃〉. (99)

Note that the above formulation is easily extended to three dimensions.
The spatial discretization is a spectral method. The horizontal direction

is expanded in a Fourier series. The vertical direction uses an expansion in
Cardinal functions, collocated on the Chebyshev-Gauss-Lobatto grid. Details
of this spatial method can be found in Solomonoff and Turkel [27] and Boyd
[6]. Matrix equations are treated with direct methods.

Note that N is discontinous at the interface, which is sometimes incom-
patible with a spectal method, leading to Gibbs type oscillations. For the
present method, since the spatial treatment is collocation, the actual value of
N at each gridpoint is used directly in the discrete equations. The resulting
solution for wn+1 in (94) is continuous, even though N is discontinuous, hence
Gibbs oscillations do not appear.

Waves are forced by imposing an artificial vertical velocity at the bottom of
the domain. The imposed frequency and amplitude determine the character
of the resulting wavetrain. The forcing creates a wave packet with finite
vertical extent. The envelope function is the raised cosine. This bottom
forcing is given by

w̃(0, x̃, t̃) =

{
1
2
α̃
[
1− cos

(
2πt̃
jT̃

)]
sin
(
x̃− σ̃t̃) if t̃ < jT̃

0 if t̃ > jT̃ ,
(100)
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where σ̃ is the forcing frequency, α̃ is the forcing amplitude, T̃ is the funda-
mental wave period, and j is a chosen number of fundamental wave periods.

A damping layer is employed at the top of the domain as a non-reflecting
lid. The damping layer is Rayleigh friction [23], where the quantity β~̃u is
included in the momentum equations. The damping layer is similar as that
used by Klemp and Lilly [15], and discussed further by Durran [9]. The
damping terms are treated explicitly, and any derivatives of β that arise in
the formulation are neglected.

Filtering is used to avoid the accumulation of energy at the highest resolved
frequencies. Filtering is achieved here using the sequence of spectral filters
discussed by Vandeven [32]. The filter is defined by

ω(ζ) = 1− (2p− 1)!

[(p− 1)!]2

∫ ζ

0

[ξ(1− ξ)]p−1dξ, (101)

where ω is the filter value, ζ is the frequency, ξ is a dummy variable for
ζ, and p is the integer order of the filter. This integral may be evaluated
analytically to obtain

ω(ζ) =

p∑
q=1

(2p− 1)!

(p− 1)!(2p− q)!ζ
q−1(1− ζ)2p−q. (102)

This family of filters becomes increasingly sharp as p increases, and were
proven by Vandeven [32] to retain spectral accuracy. In addition, some of
the more common filters can be shown to be members of this sequence. The
velocity and potential temperature fields were filtered in all directions at each
time step for a fixed value of p. The value of p = 15 was generally found
to be sufficient. Furthermore, simulations of the linear equations with and
without filtering with this value of p demonstrated no significant effects on
the basic wave.

All cases reported here use a resolution of 128 × 128. A number of cases
with higher resolution, up to 512×512, have been considered, and show that
the results are not significantly changed. Similarly, the time step is set to
∆t̃ = 0.1 for all results, after a substantial effort to demonstrate insensitivity
to the time step.

3.4 Results

Results are obtained for two cases; 1) λ of 10 km and 2) λ of 100 km (λ is the
horizontal wavelength of the forcing). The parameter values for case 1 and
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2 are shown in tables 1 and 2, respectively. Case 1 was chosen as typical of
internal waves in the atmosphere, while case 2 proved to be more convenient
for studying large amplitude forcing and wave breaking.

Results for case 1 are shown in figures 2, 3, and 4. The profile indicated
by the solid line in figure 2 is a vertical slice of vertical velocity, w̃, at three
time values. The profile indicated by a dashed line in figure 2 is the same
case repeated without nonlinear effects. Note that the horizontal dashed line
shows the vertical position of the interface in all figures.

The wave packet that is created by the bottom forcing is chosen to have
a vertical length equal to two vertical wavelengths of the fundamental wave,
while the distance between the bottom boundary and the interface is ap-
proximately 2.7 times this same vertical wavelength. Hence, the wave packet
for case 1 ’fits’ between the bottom boundary and the interface. Figure 2a
shows the wave packet is below the interface, but beginning to interact with
it. The results in figure 2b are for a later time where the wave packet has al-
ready interacted with the interface, creating transmitted and reflected waves,
both substantially weaker than the incident waves. In figure 2c, the reflected
waves have impacted the bottom of the domain and reflected again, however
the packet has now lost much of its coherence.

Figure 3 shows the horizontal average of horizontal velocity, 〈ũ〉, for the
same times as figure 2. Figure 3a shows that there is a horizontal mean
flow aligned with the wave packet. The simulations show that this mean
flow moves with the wave packet, as discussed previously by Sutherland [29]
using constant N throughout.

A different result is evident in the average horizontal velocity shown in fig-
ure 3b and 3c; the wave packet develops a horizontal mean flow, concentrated
near the interface. Note that the wave packet in figure 2b at t̃ = 1000 has
moved beyond the interface, yet the mean flow shown in figure 3b remains.
Figure 3c shows that this mean flow at t̃ = 1500 is largely unchanged. Much
later times, when the wave motion has completely dissipated, show that this
mean flow remains permanently.

These results indicate that there are two components to the mean flow, the
mean flow that is associated with the wave packet, moving with the packet,
and the mean flow at the interface that becomes a permanent feature of the
flow, even after the waves are gone. The strength of both components of
the mean flow depends strongly on the amplitude of the wave. However, the
character of the mean flow does not change dramatically with wave ampli-
tude. For example, figure 5 shows the normalized mean flow for case 1 with
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three values of forcing amplitude, α̃ = 0.01, 0.05, and 0.1. The normalized
mean flow is defined as 〈ũ〉

α̃2
. (103)

Figure 5 shows that this normalized mean flow is nearly identical for the
three different amplitudes. This is true for both the packet mean flow, figure
5a, and the interfacial mean flow, figure 5b.

The mean flow is obtained by solving (99), which is the horizontal average
of (69). The presence of the interfacial mean flow can be explained as a
consequence of the change in momentum flux, 〈ρ̃ũw̃〉. Integrate (99) across
the interface to obtain

∂

∂t̃

∫
z̃

ρ̃〈ũ〉 dz̃ = 〈ρ̃ũw̃〉∣∣
below

− 〈ρ̃ũw̃〉∣∣
above

, (104)

The momentum flux, 〈ρ̃ũw̃〉, above the interface is much small than below
the interface, due to the wave reflection. The wave reflection is necessary
to meet the interfacial conditions, even for linear waves, as discussed in the
previous section. The decrease in 〈ρ̃ũw̃〉 across the interface makes the right-
hand-side of (104) positive, which can only be balanced by an increase in 〈ũ〉;
a horizontal acceleration. More generally, since the side boundary conditions
are periodic, and the flow inviscid, then there is no net force to counter the
change in momentum caused by the wave reflection. The horizontal acceler-
ation appears instead. Further evidence is provided by the normalized mean
velocity, figure 5, which shows that the strength of the mean flow depends
approximately on the square of the amplitude, as does the momentum flux.

The behavior in the region beneath the interface changes dramatically dur-
ing the evolution of the wave packet, as can be seen in figure 2. In figure
2a, the wave packet is well-defined, while in figure 2c, the motion is reduced
to a standing wave oscillation. This feature is more clearly shown in figure
4 with contours of the vertical velocity at times that correspond to figures 2
and 3. Figure 4a shows the coherent wave packet in the lower layer, while
figure 4c shows that the wave packet is now a standing wave, with the vertical
wavelength equal to the vertical distance from the bottom to the interface.

Once the standing wave oscillation begins in earnest, the strength decreases
as wave energy is transmitted through the interface. The resulting behavior
in the upper layer during this period is a temporally decaying mode that is
evanescent in the upper layer, meaning that the wave amplitude decreases
with increasing altitude. Note that an evanescent mode does not exist if
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the waves are allowed to fill the entire domain and become fully-developed,
as indicated in the previous section. Evanescent behavior can be seen at
earlier times, before the standing oscillation is predominant. For example,
the behavior in the upper layer in Figure 2b shows that the transmitted wave
has an evanescent profile.

Contours of total potential temperature (not shown), which are often used
to indicate wave overturning [33], clearly show that the waves are not over-
turning for case 1 for the amplitudes mentioned above. Higher amplitude
forcing has been found to result in a shear flow instability at the bottom of
the domain, as a result of the mean flow created near the wavemaker. This
phenomenon makes it difficult to create large amplitude waves for the param-
eter values of case 1. Hence the results of case 1 correspond to a relatively
small amplitude. This can be seen in figure 2, which shows profiles of w̃ for
linear (dashed line) as well as nonlinear cases. The difference between linear
and nonlinear is largest in figure 2b below the interface, where incident waves
and reflected waves are interacting, but overall the differences are not large.

The results for case 2 are shown in figures 6-17 for three forcing amplitudes.
Figure 6, 7, and 8 show profiles of vertical velocity, mean horizontal velocity,
and contours of vertical velocity, respectively, for three time values and with
a forcing amplitude of 0.1 (as for case 1). Figure 9 shows contours of total
potential temperature for the same times. The interface is again indicated
with the dashed line.

The times for figures 6a and 6b correspond to when the wave packet is
interacting with the interface. The vertical position of the wave packet can
be seen clearly in the contours of vertical velocity, shown in figure 8. This
case (case 2) does not leave behind a strong standing wave, as did case 1. The
transmitted wave packet remains coherent and continues to ascend, growing
in amplitude. Finally, convective overturning occurs, as can be seen in the
contours of total potential temperature shown in figure 9c. The waves ’break’
at this point in the simulation. With the chosen filter (p = 15), the simulation
cannot continue. Stronger filtering would be required.

Note in figure 7c that the mean flow at the interfacial altitude has not
changed from the mean flow in figure 7b at an earlier time. The wave packet
has moved beyond the interface and left this interfacial mean flow behind, as
with the previous case. The strong mean flow above the interface in figure
7c is moving with the wave packet.

The contours of total potential temperature for the earlier times, shown
in figure 9a and 9b, show that the wave steepens considerably during the
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interaction with the interface. Figure 9b shows in fact that the wave nearly
overturns; closer examination shows that it does not. This wave steepening
appears to be directly related to the presence of the mean flow, as will be
seen.

Results for a higher amplitude, α̃ = 0.15, are shown in figures 10-13. The
evolution of the wave packet is very similar with this larger amplitude. In
particular, figure 11 shows that the interfacial mean flow has the same form
as in figure 7, except now is stronger. A significant difference is evident in
the contours of total potential temperature, shown in figure 13. Figure 13a
shows that the wave is overturning below the interface. Figure 13b indicates
that breaking has occurred below the interface, and the filtering has managed
to suppress the small scale activity that is created during the breaking event.

The wave packet has moved past the interface in figure 13c, and has reach
an amplitude where breaking is occurring again. The position of the wave
packet is evident in the profiles of w̃ in figure 10, and contours of w̃ in figure
12. Note that the altitude for breaking is lower than the altitude for breaking
in figure 9c for the case with α̃ = 0.1.

Results for an even higher amplitude, α̃ = 0.2, are shown in figures 14-
17. Once again, the only difference is the value of the forcing amplitude; all
other parameters are set to the values for case 2 listed in table 2. The wave
dynamics are again similar, except now the wave breaks more violently below
the interface. This can be seen in the contours of total potential temperature,
figure 17. The filtering is not sufficient to control this breaking event, and
the smallest scales are overwhelmed. The simulation cannot continue without
added filtering.

It can be seen in figures 14-17 that the wave packet has been transmitted,
and is developing another breaking event. This is most evident in figure 17b,
which shows the contours of total potential temperature as they steepen.

The wave breaking below the interface can be explained as a consequence
of the interfacial mean flow. The horizontal phase velocity of a linear wave
in this rescaled system, neglecting the inverse of the scale height, is

c̃p = σ̃, (105)

It is well-known that an internal wave attempting to transit a mean shear
flow will experience a critical layer at the place where the parallel component
of wave speed is equal to the local mean velocity. The forcing frequency, and
therefore the horizontal wavespeed, for case 2 is approximately unity. The
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interfacial mean flow with α̃ = 0.1 has a maximum value of approximately
unity, as shown in figure 7b. This mean flow apparently caused the wave
steepening shown in figure 9b, but was not strong enough to cause overturn-
ing.

The maximum value of the interfacial mean flow with α̃ = 0.15 was greater
than unity, and greater than the horizontal wave speed. This mean flow is
strong enough to overturn the waves, as is evident in figure 13. And finally,
with α̃ = 0.2, the mean flow is much greater than unity, resulting in a much
more violent breaking event.

One final comment concerns the location of breaking. All simulations to
date show that the interfacial mean flow causes breaking below the interface,
never above. In fact, the wave amplitude immediately above the interface
is greatly reduced by interfacial reflection or wave breaking. This indicates
that wave-induced turbulence in the atmosphere is expected in the region
below the tropopause, not above. This is in contrast to the conclusions of
Van Zandt and Fritts [31], who argued that wave breaking and turbulence
are expected above the tropopause, rather than below.

(a) t̃ = 500 (b) t̃ = 1000 (c) t̃ = 1500

Figure 3: Profiles of vertical velocity, w̃ = w√
gλ

, for case 1 with α̃ = 0.1

(the dashed profile is linear)
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(a) t̃ = 500 (b) t̃ = 1000 (c) t̃ = 1500

Figure 4: Mean horizontal velocity, 〈ũ〉, for case 1 with α̃ = 0.1

(a) t̃ = 240 (b) t̃ = 270 (c) t̃ = 340

Figure 5: Profiles of vertical velocity, w̃ = w√
gλ

, for case 2 with α̃ = 0.1

(dashed profile is linear)
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(a) t̃ = 240 (b) t̃ = 270 (c) t̃ = 340

Figure 6: Mean horizontal velocity, 〈ũ〉, for case 2 with α̃ = 0.1
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4 Non-Boussinesq internal waves

Internal waves in a non-Boussinesq atmosphere have an exponentially grow-
ing amplitude, becoming unbounded in an unbounded domain. Weakly
nonlinear non-Boussinesq theory must contend with this unbounded linear
behavior, and result in higher harmonics that grow exponentially with an
even faster rate. This problem is an impediment to further theory of non-
Boussinesq waves. An alternative expansion has been found, and has been
published in SIAM Journal of Applied Math 3.

Internal waves of permanent form are horizontally periodic waves where
the wave amplitude does not evolve. Weakly nonlinear theory of internal
waves of permanent form in a continuously stratified fluid was previously
considered by Thorpe [30] and Yih [36], both treating incompressible inviscid
flow between two rigid horizontal surfaces assuming constant Brunt-Vaisala
frequency. Thorpe [30] showed that the waves generate a mean flow, but
he did not determine a nonlinear contribution to the wave speed. Yih [36]
determined the wave-induced mean flow by adjusting the background state,
and found a second-order correction to the wavespeed.

Yih’s results are surprising, and show that the second-order wavespeed
correction is negative. A negative value means that larger amplitude waves
travel slower than small amplitude waves, opposite the case for most wave
systems, such as free surface waves. Yih only reported results with a hori-
zontal wave-number of unity.

Both Thorpe and Yih used a straight-forward expansion in the wave am-
plitude; for example, Yih [36] expanded the streamfunction, ψ, using

ψ = ψ0 + εψ1 + ε2ψ2 + · · · (106)

where ε << 1 is the wave amplitude. The linear solution has the form

ψ1 = e
β
2
z sin kx sinmz, (107)

where k and m are the horizontal and vertical wavenumbers, respectively, and
β is the Boussinesq parameter. The product of the constant wave amplitude

and the exponential growth, εe
β
2
z, is often thought of as an exponentially

growing wave amplitude. This characteristic is well-known in atmospheric
waves [13], and all non-Boussinesq internal waves.

3J. McHugh, SIAM Journal of Applied Math, 66, pp. 1845-1855, 2009.
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The second-order solution must contend with nonlinear quadratic terms,
and Yih’s resulting expression for ψ2 contains a term similar to

ψ2 = · · · ε2eβz sin 2kx sin 2mz · · · , (108)

along with many other terms. Note that the exponential growth with altitude
of ψ2 is twice the exponential growth of ψ1. The third order equation contains

cubic terms, resulting in the behavior e
3β
2
z, and finally the nth order solution

would contain e
nβ
2
z behavior. Clearly the rate of growth is increasing with

each term. This straight-forward expansion in wave amplitude does not
converge at any altitude, but is asymptotic if the top boundary is a rigid
lid. If different top boundaries are treated, the results with this expansion
are not valid.

An alternative expansion that is more generally valid is considered here.
The new expansion is suggested by the following ’model’ equation, obtained
by arbitrarily discarding terms from the governing equation:

uz − u+ u2 = 0, (109)

where u = u(z). The exact solution is readily obtained:

u =
εez

1 + εez
, (110)

where ε is a constant.
Let ζ = εez for convenience, and the exact solution becomes

u =
ζ

1 + ζ
. (111)

Note the singular point at ζ = −1. A McLauren series expansion of (111) is

u =
∞∑
n=1

(− 1
)n
ζn = εez − ε2e2z + ε3e3z + · · · . (112)

The presence of the singular point limits the validity of (112) to ζ < 1. This
McLauren expansion is analogous to the expansion used by both Thorpe [30]
and Yih [36].

An expansion without this limitation is a Laurent expansion about ζ = −1
of the form

u =
∞∑
n=0

an

[
1

ζ + 1

]n
. (113)
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The coefficients can be found by merely rearranging the exact solution:

u =
ζ

1 + ζ
= 1− 1

1 + ζ
, (114)

resulting in a0 = 1, a1 = −1, and an = 0 for n > 1. Hence the exact solution
to the model equation is equivalent to this Laurent expansion about ζ = −1.
The results of this model equation suggest that a Laurent-type expansion
may provide a solution that is more generally valid, and such a solution is
considered here. The dependent variable will be expanded in a series of the
form

∞∑
p=1

(
εeαz

1 + εeαz

)p
φp
(
x, z
)
, (115)

where α is a constant yet to be determined, and p is an integer. For the
nonlinear case, only the first few terms of this expansion can be determined,
due to the complexity of the equations. For this reason, the results are only
valid for small amplitude, as with Yih’s previous theory.

The results found with the new expansion show that the second-order cor-
rection is positive or negative, depending on wave parameters. Furthermore,
the wave amplitude with this new expansion no longer shows an unbounded
exponential growth with altitude. Instead the wave amplitude experiences
an exponential growth with altitude, but then asymptotically approaches a
constant value. This behavior of wave amplitude is often called saturation
[11, 25, 26], and waves whose amplitude no longer grows with altitude are
saturated waves. The results with the new expansion show the same general
trends as Yih’s original expansion.

This new result is discussed below in section 5. Section 2 discusses the
equations governing the problem, section 3 gives the linear solution, showing
that it is identical to the well-known linear solution, and section 4 gives some
of the details of the weakly nonlinear analysis.

4.1 Basic equations and Long’s equation

The flow is assumed to be incompressible, inviscid, and two-dimensional,
governed by the Euler equations, the continuity equation, and the equation
of incompressibility:

ρ
Du

Dt
= −∂p

∂x
, (116)
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ρ
Dw

Dt
= −∂p

∂z
− ρg, (117)

∂u

∂x
+
∂w

∂z
= 0, (118)

Dρ

Dt
= 0, (119)

where (u,w) are the velocities in the (x, z) directions, respectively, p is the
pressure, ρ is the density, and g is the gravitational constant.

If a coordinate system is chosen to move with the waves, then the flow is
steady, and Longs equation (3) may be used. The system is made dimension-
less using a velocity scale, U , to be defined later, a constant value of density,
ρ00, and the layer thickness, d:

δ̂ =
δ

d
, x̂ =

x

d
, ẑ =

z

d
, ρ̂ =

ρ

ρ00

. (120)

Dropping the circumflex, Long’s equation becomes

∇2δ +
1

2

1

q

dq

dz0

[
2
∂δ

∂z
− (∇δ)2]+

β

F 2
r u

2
0

δ = 0, (121)

where

Fr =
U√
gd
, (122)

is the Froude number.

4.2 Linear solution

Equation (3) requires the flow to be steady. Steady flow with traveling waves
is achieved by choosing the coordinate system to be moving with the hori-
zontal wavespeed, c. This approach is adopted for the linear case by choosing
Fru0 = c. Note that the nonlinear theory will include a wave-induced mean
flow, and u0 must account for part of this, as will be seen.

Linearize Long’s equation to obtain

∇2δ − βδz +
β

c2
δ = 0. (123)

Expand δ with
∞∑
p=1

(
εeαz

1 + εeαz

)p
φp
(
x, z
)
, (124)
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where φp are yet to be determined. Insert (124) into (123), and collect on
powers of the quantity εeαz

1+εeαz
. A successful choice for α is

β

2
. (125)

The resulting coefficient of
(

εeαz

1+εeαz

)p
is

∇2φp +
(
p− 1

)
βφpz +

[
β

c2
+ p
(
p− 2

)β2

4

]
φp =

(
p− 1

)
βφp−1z +

(
p− 1

)(
2p− 3

)β2

4
φp−1

−(p− 1
)(
p− 2

)β2

4
φp−2. (126)

for all p ≥ 1.
A solution for all p is

φp = sin kx sinmz, (127)

where k and m are constants. Equation (126) at each order results in

c2 =
β

k2 +m2 + β2

4

, (128)

the familiar dispersion relation.
The final result is

δ =

[ ∞∑
p=1

(
εe

β
2
z

1 + εe
β
2
z

)p]
sin kx sinmz, (129)

where cosmz may be substituted for sinmz. This solution may be verified
by direct substitution.

Each p > 1 could also include a homogeneous solution, with two arbitrary
constants. These homogeneous solutions have the form

φp = e−
p−1
2
βz sin kx sinmz. (130)

Note that these homogeneous solutions beyond p = 1 have exponential decay
with altitude, hence these homogeneous components do not compromise the
uniform validity of the result of the next section.
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The solution in (129) is identical to the traditional linear solution with an
exponential growing wave amplitude, as can be demonstrating by quoting
the well know expansion,

eα =
∞∑
p=1

(
eα

1 + eα

)p
. (131)

4.3 Weakly nonlinear waves with rigid boundaries

A continuously stratified layer of fluid with rigid top and bottom will now be
treated with the expansion of the previous section. This is the same problem
treated by Yih [36] and Thorpe [30].

The governing equation is (3). Define Q:

Q =
εeαz

1 + εeαz
. (132)

Expand δ in a power series:

δ = Qφ1 +Q2φ2 + · · · , (133)

where φj are not the same as the linear solution. Note that the analysis is
aided by the relation

d

dz
(Q)p = αp

[
(Q)p − (Q)p+1

]
. (134)

Two features are anticipated; 1) the waves will create a mean flow at second
order, and 2) the wavespeed must be adjusted at second order to obtain a
uniformly valid solution. In the linear theory of the previous section, the
upstream velocity, u0, was chosen to be the constant wavespeed, c, making
the waves of permanent form steady. For the present nonlinear theory, a
coordinate system is again chosen to move with the waves, however choosing
u0 to be constant does not provide a success result. Instead, the wavespeed
and part of the wave-generated mean flow are merged together as u0, and
then this is expanded in the same manner:

Fru0 = c0

[
1 +Qc1 +Q2c2 + · · ·

]
, (135)
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where the cj’s are constants. The constant, c0, will be equal to the linear
wavespeed, and the remaining cj’s will be chosen to obtain a uniformly valid
solution.

The work of Yih shows that the upstream density profile must be adjusted
so the the density profile in the presence of waves results in the desired profile.
This correction is included at this early stage by expanding β:

β = β0

[
1 +Qβ1 +Q2β2 + · · ·

]
, (136)

where the βj’s also constants.

4.3.1 First order

Insert (133), (135), and (136) into (3) and collect the coefficient of Q to
obtain

∇2φ1 +

[
2α− β0

]
φ1z +

[
β0

c20
− β0α + α2

]
φ1 = 0. (137)

If

α =
β0

2
, (138)

matching the value of the linear solution, then (137) becomes

∇2φ1 +

[
β0

c20
− β2

0

4

]
φ1 = 0. (139)

The solution to (139) is
φ1 = sin kx sinmz, (140)

where k is constant,
m = nπ (141)

for any integer, n, and (128) determines c0. Note that (139) along with (141)
satisfies the boundary conditions at z = 0, 1.
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4.3.2 Second order

Using the choice for α given by (138), the second-order equation is

∇2φ2 + β0φ2z +
β0

c20
φ2 = β0φ1z +

β2
0

4
φ1 (142)

−1

2
β0

[
φ1

2
x +

(
φ1z +

β0

2
φ1

)2]
−c1

[
β0φ1z +

β2
0

2
φ1 − 2

β0

c20
φ1

]
+β1

[
β0φ1z +

β2
0

2
φ1 − β0

c20
φ1

]
.

Note that the first two terms on the right-hand-side are part of the linear
solution.

The value for β1 is chosen to match the upstream conditions, and has been
found to be zero, in agreement with the results of Yih [36]. Details of this
correction are delayed until later, when the correction is not zero. The value
of c1 is chosen to assure a uniformly valid solution, and has also been found
to be zero, in agreement with both Thorpe [30] and Yih [36].

A homogeneous solution to (142) must be included in order to meet the
boundary conditions. The necessary solutions are

e−
β0
2
z
[
a cosµz + b sinµz

]
, (143)

and
e−

β0
2
z
[
a cos γz + b sin γz

]
sin 2kx. (144)

where

µ2 = G0 − β2
0

4
, (145)

γ2 = G0 − 4k2 − β2
0

4
. (146)

If γ2 < 0 or µ2 < 0, then a hyperbolic form is chosen for (143) or (144),
respectively.
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The final expression for φ2 is

φ2 = sin kx sinmz

+ β0

{
B1

G0

[(
cosµz +

(
e
β0
2 − cosµ

)sinµz

sinµ

)
e−

β0
2
z − 1

]
+

D1

G0 − 4m2

[(
cos γz +

(
e
β0
2 − cos γ

)sin γz

sin γ

)
e−

β0
2
z − 1

]
cos 2kx

+
B2

(
G0 − 4m2

)
+B3

(
2mβ0

)
M

[(
cosµz +

(
cos 2me

β0
2 − cosµ

)sinµz

sinµ

)
e−

β0
2
z

− cos 2mz

]
− B2

(
2mβ0

)
+B3

(
G0 − 4m2

)
M

sin 2mz

−D2P −B3

(
2mβ0

)
N

[(
cos γz +

(
cos 2me

β0
2 − cos γ

)sin γz

sin γ

)
e−

β0
2
z

− cos 2mz

]
cos 2kx

+
D2

(
2mβ0

)−B3P

N
sin 2mz cos 2kx

}
.

where G0, B1, B2, B3, M , P , and N are given in Appendix I, and are defined
as in Yih [36] to allow for direct comparison.

4.3.3 Third order

The third-order equation is

∇2φ3 + 2β0φ3z +

[
β0

c20
+ 3

β2
0

4

]
φ3 = 2β0φ2z + 6

β2
0

4
φ2 − β2

0

2
φ1 (147)

−β0

[
φ1xφ2x +

(
φ1z +

β0

2
φ1

)(
φ2z +

β0

2
φ2 − β0

2
φ1

)]
−2c2

[
β0φ1z +

β2
0

2
φ1 − β0

c20
φ1

]
+β2

[
β0φ1z +

β2
0

2
φ1 − β0

c20
φ1

]
,
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This equation will be used to determine c2; no attempt will be made to
determine φ3 in its entirety.

Before finding c2, it is necessary to determine β2 so that the upstream
density profile matches the density profile in the presence of waves averaged
over one wavelength. Following Yih [36], the definition of δ in (4) and the
above solution to second order are used to obtain

z = z0 +Qφ1 +Q2φ2. (148)

This is a nonlinear algebraic equation for the shape of a streamline, z =
η(x, z0), for a chosen value of z0. A streamline in this scenario is also a
line of constant density, and the relationship between ρ and z upstream
could be used to eliminate z0, resulting in z = η(x, ρ). The inversion of this
relationship is the density in the disturbed field, ρ(x, z).

Equation (148) is inverted using the method of successive approximations,
as in Stokes [28] and Yih [36], and then averaged over a wavelength to obtain

η = z0 +

[
εe

β0
2
z0

1 + εe
β0
2
z0

]2
{(

h1 + h3

)
e−

β0
2
z0 cosµz0

+
(
h1 + h3

)
F3(µ)e−

β0
2
z0 sinµz0 − h3 cos 2mz0 − h4 sin 2mz0 − h1

}
, (149)

where expressions for the hj and F3 are provided in Appendix II.
The correction is now found using the approach of Yih:

1

ρ0

dρ0

dz0

=
1

ρ

dρ

dη

dη

dz0

= −β0
dη

dz0

, (150)

which may be further evaluated by taking a derivative of (149). The effect
is only felt at second order, and is accounted for by choosing β2:

β2 = β0

{[(
µF3(µ) +

β0

2

)
cosµz +

(β0

2
F3(µ)− µ

)
sinµz

](
h1 + h3

)
e−

β0
2
z

−
(
β0h3 + 2mh4

)
cos 2mz +

(
2mh3 − β0h4

)
sin 2mz − β0h1

}
. (151)

The last stage of the second-order solution is to determine c2, found by
expanding the right-hand-side of (147) and suppressing secular terms. Equa-
tion (147) is multiplied by eβ0z sinmz and integrated over the vertical domain.
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The integral of all terms involving φ3 is exactly zero, as can be demonstrated
using Green’s second identity and integration-by-parts, making eβ0z sinmz
the correct factor. The final result is

c2 =
1

8
β0

[
T2 + 4T3 − β0T1

T4

]
, (152)

where T1, T2, T3, and T4 are provided in appendices. Note that T1 results
from the nonlinear terms in (147), T2 from the terms involving β2, T3 from

the 2β0φ2z + 6
β2
0

4
φ2 − β2

0

2
φ1 in (147), and T4 from the terms involving c2.

4.4 Results

The complicated expression for c2 given by (152) has been evaluated numer-
ically for a wide variety of parameters. Results for two modes, n = 1, 2, are
shown in figures 4.4 and 4.4 using a solid line with β0 = 0.1. Note that the
dimensionless value of β0 for atmospheric flows is typically between 0.01 and
0.1, while flows in geophysical bodies of water may have a wider variety of
values.

Figure 4.4 shows that for k ≈ 1, c2 is negative. This agrees with the previ-
ous results of Yih [36], who only reports results for k near unity. For larger
k, figure 4.4 shows that c2 is positive. Figure 4.4 shows that c2 for the second
mode, n = 2, is positive, except for very long waves. The physical conse-
quence of a positive c2 is that higher amplitude internal waves travel faster,
often called ’amplitude dispersion’. Amplitude dispersion exists in many
other waves systems, in particular, free-surface waves. Amplitude dispersion
is important for the existence of certain types of solitary waves. Previous
studies of solitary waves in a continuously stratified flow between horizon-
tal walls was considered by Benjamin [5]. Benjamin [5] demonstrated that
solitary waves exist for this configuration, but he assumed the existence of
amplitude dispersion (pointed out by Yih [36]). It was Yih’s work showing
a negative c2 that was thought to eliminate this possibility. However, the
present results indicate that amplitude dispersion does exist, and solitary
waves may form in this configuration. Solitary waves can form in stratified
flow under other conditions, as reviewed recently by Pelinovsky, et. al. [22].

A direct comparison with the straight-forward amplitude expansion of Yih
may be obtained by expanding Q, as defined in (6), using

Q = εeαz − ε2
(
eαz
)2

· · · (153)
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and deleting all but the first term. The expansion in Q is then identical to
that of Yih, and the present results reduce to exactly the formula’s of Yih.
The value of c2 for Yih’s expansion are obtained from (152) by deleting the
quantity, T3. The results without T3 are also plotted in figures 4.4 and 4.4
with a dashed line, and show the same trends as the present results. For all
cases considered, the present results predict a wave-speed correction that is
greater than that predicted by Yih’s expansion.

Figures 4.4 and 4.4 show that c2 becomes unbounded for isolated values of
k. These values correspond to γ = ±nπ, where γ is defined in (146) as part
of the second-order homogeneous solution. Hence this singularity appears
when the homogeneous solution results in a vertical wavenumber that fits
perfectly between boundaries. Yih [36] also found this difficulty, and reports
that this singularity will not appear if the analysis is extended to the next
order, something that is very difficult to achieve, and is not pursued here.
At this time, the value of c2 near γ = ±nπ is unclear.

The internal waves discussed here generate a mean flow, as is well-known.
This mean flow can be obtained by assembling an expression for δ using
(133) and the final result for φ2, then averaging over a horizontal wavelength
to obtain δ. The final mean flow is obtained when u0 is combined with the
vertical derivative of δ. The influence of this wave-induced mean flow on c2
is measured by the quantity T2 in (152), and accounts for most of c2. This
was also the case for Yih [36]. Physically, this means that displacement of
streamlines is the predominant nonlinear effect, rather than an interaction
of higher harmonics.

Note that there is some ambiguity between the wavespeed and the wave-
induced mean flow. The initial steps of the analysis chose a coordinate system
moving with the nominal wavespeed so that the flow is steady. Any other
choice of coordinate system results in an unsteady velocity field. The absolute
speed of the waves can only be defined relative to the walls. However, as the
boundaries have no shape, and the horizontal velocity of the boundaries is
irrelevant in inviscid flow, there is no method of determining the absolute
wavespeed. The second-order correction to c0 is given by Q2c2. Since Q2

is positive definite, then the sign of this correction is determined by the
sign of c2. Furthermore, Q contains the small parameter, ε, and cannot be
larger than the linear wavespeed. This means that the wave-speed correction
causes the wave pattern to move faster or slower, depending only on the
wave amplitude and the sign of c2. This feature still represents amplitude
dispersion, despite this ambiguity.

42



A vertical slice of δ at second order for an example set of parameters shows
that this wave envelope is a second-order saturated wave.
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Figure 7: Second-order correction to the wavespeed with n = 1 and β0 = 0.1
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Figure 8: Second-order envelope shape
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5 Nonlinear Schrödinger equations for a wave

packet at the interface

Consider two layers, with each layer distinguished by the value of the Brunt-
Vaisala frequency, assumed constant within each layer. The density profile
is continuous at the interface. The flow is modeled with the Boussinesq
approximation.

A packet of internal waves approach the interface between the two layers
from below. The waves are horizontally periodic. The weakly nonlinear
theory is considered below.

5.1 Governing equations

Assume incompressible flow, and neglect any diffusion. The flow is assumed
to be incompressible, inviscid, and two-dimensional. Stratification is present
due to the presence of a non-diffusing quantity, and the flow is assumed to be
Boussinesq. The flow is then governed by the Euler equations in Boussineq
form, the continuity equation, and the equation of incompressibility:

ρ0
Du

Dt
= −∂p̂

∂x
, (154)

ρ0
Dw

Dt
= −∂p̂

∂z
− ρ̂g, (155)

∂u

∂x
+
∂w

∂z
= 0, (156)

Dρ̂

Dt
+
dρ

dz
w = 0. (157)

where (u,w) are the velocities in the (x, z) directions, respectively, p̂ is the
dynamic pressure, ρ0 is an average (constant) density, ρ(z) is the mean den-
sity, ρ̂ is the density perturbation, and g is the gravitational constant.

It is convenient to put the governing equations in a more convenient form
by eliminating all variables in the linear terms in favor of w. The result is

∂2

∂t2

[
∇2w

]
+N2∂

2w

∂x2
=

∂

∂t

[
∂2A1

∂x∂z
− ∂2A3

∂x2

]
+

g

ρ0

∂2A4

∂x2
, (158)

where
A1 = uux + wuz, (159)
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A3 = uwx + wwz, (160)

A4 = uρ̂x + wρ̂z, (161)

5.2 Interfacial conditions

The mean density profile is chosen to be continuous, but have a discontinous
first derivative, such that the fluid exists in two semi-infinite layers, each
layer having a unique value of the Brunt-Vaisala frequency. The interface
between the two layers must satisfy interfacial conditions. There are two
types of interfacial conditions on a material line separating two inviscid layers
of fluid; kinematic and dynamic. The kinematic condition in an inviscid flow
states that the normal velocity of the material line is equal to the normal
component of velocity of the fluid. The dynamic condition states that the
pressure must be continuous across the material line.

The kinematic conditions are

ηt + u−ηx = w−, (162)

ηt + u+ηx = w+, (163)

which hold on the interface, z = η, where u−, w− are velocities in the lower
layer, u+, w+ are velocities in the upper layer, and η is the vertical displace-
ment of the interface.

A primary difficulty is meeting the interfacial conditions on the actual
interface, z = η, without knowing the position of the interface beforehand.
This difficulty is treated by expanding all terms in a Taylor series about
the mean position of the interface, in the same manner usually used for free
surface flow. The kinematic conditions become

ηt +

[
u− + u−z η +

1

2
u−zzη

2 + ...

]
ηx =

[
w− + w−z η +

1

2
w−zzη

2 + ...

]
, (164)

ηt +

[
u+ + u+

z η +
1

2
u+
zzη

2 + ...

]
ηx =

[
w+ + w+

z η +
1

2
w+
zzη

2 + ...

]
, (165)

where the coefficients are now evaluated at the mean position of the interface,
z = 0.

The dynamic condition is continuity of total pressure, p. Hence

p− = p+ (166)
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on z = η, where p− and p+ are the pressures in the lower and upper layers,
respectively. Consider the incompressible flow model for now, rather than the
more restrictive Boussinesq approximation. The total pressure is segmented
into the mean and fluctuating parts:

p = p̃+ p̂. (167)

Expanding (166) in a Taylor series, as before, gives

[
p̃− + p̂−

] ∣∣∣∣∣
z=0

+
∂

∂z

[
p̃− + p̂−

] ∣∣∣∣∣
z=0

η +
1

2

∂2

∂z2

[
p̃− + p̂−

] ∣∣∣∣∣
z=0

η2 + · · · =

[
p̃+ + p̂+

] ∣∣∣∣∣
z=0

+
∂

∂z

[
p̃+ + p̂+

] ∣∣∣∣∣
z=0

η +
1

2

∂2

∂z2

[
p̃+ + p̂+

] ∣∣∣∣∣
z=0

η2 + · · · .(168)

Several terms may be eliminated immediately. Pressure in the absence of
motion is continuous, which gives p̃− = p̃+ at z = 0, allowing these terms to
be dropped.

Further simplification is obtained using hydrostatic equilibrium,

∂p̃−

∂z
= −ρ̃−g, (169)

∂p̃+

∂z
= −ρ̃+g, (170)

where ρ̃− and ρ̃+ are the mean densities in the two layers. The density profile
is assumed continuous at the tropopause (although not smooth), implying
ρ̃− = ρ̃+ at z = 0. Equations (169) and (170) then result in

∂p̃−

∂z
=
∂p̃+

∂z
(171)

on z = 0. These two terms may be dropped from (168).
Furthermore, the second derivative of p̃ is related to the Brunt-Vaisala

frequency:

p̃zz = −ρ̃zg = −ρ̃
[
g
ρ̃z
ρ̃

]
= +ρ̃N2, (172)
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which holds for each layer. Higher order terms result can be treated in a
similar manner. The dynamic interfacial condition may now be written as[

p̂− − p̂+

]
z=0

+

[
p̂−z − p̂+

z

]
z=0

η +
1

2

[
p̂−zz − p̂+

zz

]
z=0

η2 + · · ·

+
1

2
ρ̃0

[
N−

2 −N+2

]
η2 +

1

3!

ρ̃0

g

[
N−

4 −N+4

]
η3 + · · · = 0, (173)

where ρ̃0 is mean density at the interface.
The restriction to Boussinesq flow merely implies that ρ̃ is now taken as

the constant, ρ0.

5.3 Weakly nonlinear theory

Define the following variables:

ξ = x− cpt, (174)

ζ = εz, (175)

τ = εt, (176)

where cp is a constant to be determined later, and ε is a small parameter
that measures the vertical length of the wave envelope. Assume all variables
depend now on ξ, ζ, τ , and z.

The governing equations for each layer become

ρ0 [(u− cp)uξ + εuτ + wuz + εwuζ ] = −p̂ξ, (177)

ρ0 [(u− cp)wξ + εwτ + wwz + εwwζ ] = − [p̂z + εp̂ζ ]− ρ̂g, (178)

uξ + wz + εwζ = 0, (179)

(u− cp) ρ̂ξ + ερ̂τ + wρ̂z + εwρ̂ζ + ρ̃zw = 0, (180)

These may be rearranged into

−ρ0cpuξ + ερ0uτ + p̂ξ = −ρ0FH , (181)

−ρ0cpwξ + ερ0wτ + p̂z + εp̂ζ + ρ̂g = −ρ0FV (182)

−cpρ̂ξ + ερ̂τ + ρ̃zw = G. (183)
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Introducing (174) into the kinematic interfacial conditions, (164) and (165),
gives

cpηξ − εητ −
[
u− +

(
u−z + εu−ζ

)
η +

1

2

(
u−zz + εu−zζ + ε2u−ζζ

)
η2 + · · ·

]
ηξ

= −
[
w− +

(
w−z + εw−ζ

)
η +

1

2

(
w−zz + εw−zζ + ε2w−ζζ

)
η2 + · · ·

]
, (184)

cpηξ − εητ −
[
u+ +

(
u+
z + εu+

ζ

)
η +

1

2

(
u+
zz + εu+

zζ + ε2u+
ζζ

)
η2 + · · ·

]
ηξ

= −
[
w+ +

(
w+
z + εw+

ζ

)
η +

1

2

(
w+
zz + εw+

zζ + ε2w+
ζζ

)
η2 + · · ·

]
, (185)

The dynamic condition, (173), becomes[
p̂− − p̂+

]
z=0

+

[(
p̂−z − p̂+

z

)
+ ε

(
p̂−ζ − p̂+

ζ

)]
z=0

η

+
1

2

[(
p̂−zz − p̂+

zz

)
+ ε

(
p̂−zζ − p̂+

zζ

)
+ ε2

(
p̂−ζζ − p̂+

ζζ

)]
z=0

η2 + · · ·

+
1

2
ρ̃0

[
N−

2 −N+2

]
η2 +

1

3!

ρ̃0

g

[
N−

4 −N+4

]
η3 + · · · = 0. (186)

5.4 Expand

Consider the Fourier expansions given by

η =
∞∑

m=−∞

ηm(τ)eimkξ, (187)

w± =
∞∑

m=−∞

w±m(τ, z, ζ)eimkξ, (188)

where m is an integer, and k is the horizontal wavenumber.
The operator on the left hand side of (158) becomes

L± =

(
− cp ∂

∂ξ
+ ε

∂

∂τ

)2[
∂2

∂ξ2
+

(
∂2

∂z2
+ ε

∂2

∂ζ2

)2]
+N±

2 ∂2

∂ξ2
. (189)
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Using (188) in (158) and separating Fourier components results in

L±
(
w±m

)
= M±

m. (190)

The interfacial boundary conditions are

cpηmξ − εηmτ + w±m = H±m, (191)

p+
m − p−m = Qm, (192)

on z = 0.

5.5 Linear solution

An incident wave is assumed to propagate with upwards group velocity in
the lower layer, impinging upon the interface. The vertical component of
velocity for such a wave is

w−1 = αA−ei
(
kξ−n−z

)
+ cc, (193)

where A− = A−(ζ, τ) is the incident wave amplitude, k and n− are the
horizontal and vertical wavenumbers, respectively, and cc means complex
conjugate. The resulting dispersion relation is

c2p =
N−

2

k2 + n−2 . (194)

However, (193) by itself cannot meet the interfacial conditions. A reflected
wave as well as a transmitted wave is required. The combination of waves is
given by

w−1 = αA−ei
(
kξ−n−z

)
+ αKB−ei

(
kξ+n−z

)
+ cc, (195)

w+
1 = αJB+ei

(
kξ−n+z

)
+ cc, (196)

where B− = B−(ζ, τ) is the reflected wave amplitude, B+ = B+(ζ, τ) is
the transmitted wave amplitude, n+ is the vertical wavenumber in the upper
layer, and

K =
n− − n+

n− + n+
,

J =
2n−

n− + n+
.
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The corresponding displacement of the interface is

η1 = iα
1

kcp
J

[
Aeikξ − A∗e−ikξ

]
, (197)

where A is the amplitude of the interface.

5.6 Amplitude equation

The left-hand-side of (190) is

L± = c2p
∂2

∂ξ2

(
∂2

∂ξ2
+

∂2

∂z2

)
+N±

2 ∂2

∂ξ2

ε

[
− 2cp

∂2

∂τ∂ξ

(
∂2

∂ξ2
+

∂2

∂z2

)
+ 2c2p

∂4

∂ξ2∂z∂ζ

]
+©(ε2). (198)

If cp is chosen to be

c2p =
N±

2

k2 + n±2 ,

and the linear solution is inserted into (190), then the zeroeth order terms
in (198) are exactly zero, leaving

ε

[
− 2cp

∂2

∂τ∂ξ

(
∂2

∂ξ2
+

∂2

∂z2

)
+ 2c2p

∂4

∂ξ2∂z∂ζ

]
+©(ε2).

The result for the upper layer is

αεi

[
kcp

(
k2 + n+2

)
B+
τ + n+k2c2pB

+
ζ

]
2Jei(kξ−n

+z) + cc,

to order ε2α. For the lower layer,

αεi

[
kcp

(
k2 + n−

2
)
A−τ + n−k2c2pA

−
ζ

]
2ei(kξ−n

−z) + cc

αεi

[
kcp

(
k2 + n−

2
)
B−τ − n−k2c2pB

−
ζ

]
2Kei(kξ+n

−z) + cc. (199)

The linear terms in the interfacial conditions with m = 1 are ©(α), and
do not add to zero, but instead provide a relationship between the incident
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wave amplitude and reflected and transmitted wave amplitudes. The nonlin-
ear terms in the interfacial conditions are ©(α2), and no choice of ε makes
the linear and nonlinear terms balance. Hence the nonlinear terms in the
interfacial conditions with m = 1 are higher order, and the linear conditions
apply:

A−
∣∣∣
ζ=0

= B−
∣∣∣
ζ=0

= B+
∣∣∣
ζ=0

. (200)

The nonlinear terms in the interfacial conditions with m = 0 and m = 2
both contribute through w±2 and u±0 .

The nonlinear terms result in

M± =©(εα2). (201)

The nonlinear terms in the interfacial conditions result in

H = −2α2 n
+

kcp
J

[
A2ei2kξ + A∗2e−i2kξ

]
+©(εα2), (202)

Q = −4α2ρ0
n−

2

k2
K

[
A2ei2kξ + A∗2e−i2kξ − 2AA∗

]
+©(εα2). (203)

The components for m = 0, 2 can be extracted by inspection:

H0 =©(εα2), (204)

H2 = −2α2 n
+

kcp
J

[
A2ei2kξ + A∗2e−i2kξ

]
+©(εα2), (205)

Q0 = 8α2ρ0
n−

2

k2
KAA∗ +©(εα2). (206)

Q2 = −4α2ρ0
n−

2

k2
K

[
A2ei2kξ + A∗2e−i2kξ

]
+©(εα2). (207)

5.6.1 Second harmonic

Equation (190) with m = 2 is now

L±
(
w2

)
= M±

2 , (208)

with boundary conditions

cpη2ξ − εη2τ + w±2 = H±2 , (209)
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p+
2 − p−2 = Q2, (210)

on z = 0.
As the governing equation is homogeneous, the only particular solution is

associated with the boundary conditions, and is

w±2 = α2 8n−
2

kcp(n
−
2 + n+

2 )
K

[
A2ei(2kξ∓n

±
2 z) + A∗2e−i(2kξ∓n

±
2 z)

]
, (211)

where
n±2 = n±

2 − 3k2. (212)

5.6.2 Mean flow

The wave-induced mean flow is determined using the wave action principles,
as outlined by Acheson [1]. The wave energy is

E =
1

2
ρ0

[
u2 + w2 +N2η2

]
, (213)

where η is the displacement of a material line. Again, using the linear solu-
tions,

E− = 2α2ρ0

[(
n−

2
+ k2

k2

)(
A−A−

∗
+K2B−B−

∗
)

+K

(
A−
∗
B−ei2n

−z + A−B−
∗
e−i2n

−z

)]
, (214)

E+ = 2α2ρ0

(
n+2

+ k2

k2

)
J2B+B+∗ (215)

The mean flow is determined using

ρ0u0 =
E

cp
. (216)

The result is

u−0 = 2α2 1

cp

[(
n−

2
+ k2

k2

)(
A−A−

∗
+K2B−B−

∗
)

+K

(
A−
∗
B−ei2n

−z + A−B−
∗
e−i2n

−z

)]
, (217)

u+
0 = 2α2 1

cp

(
n+2

+ k2

k2

)
J2B+B+∗ (218)
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5.6.3 M1

To leading order, M1 is

M−
1 = −4α3k2n−

2

[
K2
∣∣∣B−∣∣∣2(A−ei(kξ−n−z) + A−

∗
e−i(kξ−n

−z)
)

+K
∣∣∣A−∣∣∣2(B−ei(kξ+n−z) +B−

∗
e−i(kξ+n

−z)
)]
, (219)

M+
1 = 0. (220)

The result is three amplitude equations:

i
(
A−τ +

n−kcp

k2 +N−2A
−
ζ

)
+ 4

kn−
2

cp(k2 + n−2)
K2
∣∣∣B−∣∣∣2A− = 0, (221)

i
(
B−τ −

n−kcp

k2 +N−2B
−
ζ

)
+ 4

kn−
2

cp(k2 + n−2)
K
∣∣∣A−∣∣∣2B− = 0, (222)

B+
τ −

n+kcp

k2 + n+2B
+
ζ = 0. (223)

Recognizing that

cg = − nk

k2 + n2
cp,

Then these amplitude equations are more generally written as

i
(
A−τ − cgA−ζ

)
− 4

n−cg
c2p

K2
∣∣∣B−∣∣∣2A− = 0, (224)

i
(
B−τ − cgB−ζ

)
+ 4

n−cg
c2p

K
∣∣∣A−∣∣∣2B− = 0, (225)

B+
τ + cgB

+
ζ = 0. (226)

Note that cg is the vertical group velocity, while cp is the horizontal phase
velocity.
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5.7 Results

As the nonlinear part of (226) is exactly zero, then (226) is independent,
linked to the solution of (224) and 225) only throught the interfacial con-
ditions. Thus (224)-(225) may be treated simultaneously and waves in the
upper layer determined separately, if needed. It is also possible to show
several constants throughout the motion, for example,

∂

∂τ

(∣∣∣A−∣∣∣2) =
∂

∂τ

(∣∣∣B−∣∣∣2). (227)

and other results.
It is convenient to treat (224)-(225) numerically using the leap-frog method.

The results show that the interaction of the incident wave with its relection
beneath the interface generates a higher wave amplitude, and corresponding
mean flow, u0. This mean flow does not appear above the interface, and the
mean flow is in fact discontinuous at the interface. Further results will be
submitted soon to The Journal of Fluid Mechanics.
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6 Stability with a jump in stability and ve-

locity

This problem is concerned the dynamics of waves interacting with an inter-
face that has both a jump in velocity as well as a jump in the Brunt-Vaisala
frequency. This problem is motivated by recent observations 4 of large am-
plitude oscillations over Hawaii. The observations remain unexplained, but
suggest resonant over-reflection of internal waves. Previous theoretical results
of resonant over-reflection indicate a range of wavenumbers where waves will
spontaneously be created by a shear flow; no incident wave. These results
have appear in an AIAA conference paper 5, and are the subject of further
work by a Ph.D. student.

6.1 Governing equations

Assume incompressible flow, and neglect any diffusion. The flow is assumed
to be incompressible, inviscid, and two-dimensional. Stratification is present
due to the presence of a non-diffusing quantity, and the flow is assumed to
be Boussinesq. Without loss of generality, a coordinate system is chosen to
be moving with the average velocity of the two layers. In this moving but
inertial coordinate system, the speed of the upper layer is U , and the lower
layer is −U , following Grimshaw [JFM, 1979]. The flow is then governed
by the Euler equations in Boussinesq form, the continuity equation, and the
equation of incompressibility:

ρ0

[
∂û

∂t
± U ∂û

∂x
+ û

∂û

∂x
+ w

∂û

∂z

]
= −∂p̂

∂x
, (228)

ρ0

[
∂w

∂t
± U ∂ŵ

∂x
+ û

∂ŵ

∂x
+ w

∂w

∂z

]
= −∂p̂

∂z
− ρ̂g, (229)

∂ρ̂

∂t
± U ∂ρ̂

∂x
+ û

∂ρ̂

∂x
+ w

∂ρ̂

∂z
+
dρ

dz
w = 0. (230)

∂û

∂x
+
∂w

∂z
= 0, (231)

4McHugh, J. P., Dors, I., Jumper, G. Y., Roadcap, J. R., Murphy, E. A., and Hahn,
D. C., to appear in JGR, 2008.

5McHugh, J. P., Paper AIAA-2009-0109, 47th AIAA Aerospace Sciences Meeting, Or-
lando, FL, January, 2009.
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where (u,w) are the velocities in the (x, z) directions, respectively, p̂ is the
dynamic pressure, ρ0 is an average (constant) density, ρ(z) is the mean den-
sity, ρ̂ is the density perturbation, and g is the gravitational constant.

6.2 Interfacial conditions

The mean density profile is chosen to be continuous, but have a discontinous
first derivative, such that the fluid exists in two semi-infinite layers, each
layer having a unique value of the Brunt-Vaisala frequency. The interface
between the two layers must satisfy interfacial conditions. There are two
types of interfacial conditions on a material line separating two inviscid layers
of fluid; kinematic and dynamic. The kinematic condition in an inviscid flow
states that the normal velocity of the material line is equal to the normal
component of velocity of the fluid. The dynamic condition states that the
pressure must be continuous across the material line.

The kinematic conditions are

ηt − Uηx + û1ηx = ŵ1, (232)

ηt + Uηx + û2ηx = ŵ2, (233)

which hold on the interface, z = η, where u1, w1 are velocities in the lower
layer, u2, w2 are velocities in the upper layer, and η is the vertical displace-
ment of the interface.

A primary difficulty is meeting the interfacial conditions on the actual
interface, z = η, without knowing the position of the interface beforehand.
This difficulty is treated by expanding all terms in a Taylor series about
the mean position of the interface, in the same manner usually used for free
surface flow. The kinematic conditions become

ηt − Uηx +

[
û1 + û1zη +

1

2
û1zzη

2 + · · ·
]
ηx

=

[
w1 + w1zη +

1

2
w1zzη

2 + · · ·
]
, (234)

ηt + Uηx +

[
û2 + û2zη +

1

2
û2zzη

2 + · · ·
]
ηx

=

[
w2 + w2zη +

1

2
w2zzη

2 + · · ·
]
, (235)
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where the coefficients are now evaluated at the mean position of the interface,
z = 0.

The dynamic condition is continuity of total pressure, p. Hence

p1 = p2 (236)

on z = η, where p1 and p2 are the pressures in the lower and upper layers,
respectively. Consider the incompressible flow model for now, rather than the
more restrictive Boussinesq approximation. The total pressure is segmented
into the mean and fluctuating parts:

p = p̃+ p̂. (237)

Expanding (236) in a Taylor series, as before, gives

[p̃1 + p̂1]

∣∣∣∣∣
z=0

+
∂

∂z
[p̃1 + p̂1]

∣∣∣∣∣
z=0

η +
1

2

∂2

∂z2
[p̃1 + p̂1]

∣∣∣∣∣
z=0

η2 + · · · =

[p̃2 + p̂2]

∣∣∣∣∣
z=0

+
∂

∂z
[p̃2 + p̂2]

∣∣∣∣∣
z=0

η +
1

2

∂2

∂z2
[p̃2 + p̂2]

∣∣∣∣∣
z=0

η2 + · · · .(238)

Several terms may be eliminated immediately. Pressure in the absence of
motion is continuous, which gives p̃1 = p̃2 at z = 0, allowing these terms to
be dropped.

Further simplification is obtained using hydrostatic equilibrium,

∂p̃1

∂z
= −ρ̃1g, (239)

∂p̃2

∂z
= −ρ̃2g, (240)

where ρ̃1 and ρ̃2 are the mean densities in the two layers. The density profile
is assumed continuous at the tropopause (although not smooth), implying
ρ̃1 = ρ̃2 at z = 0. Equations (239) and (240) then result in

∂p̃1

∂z
=
∂p̃2

∂z
(241)

on z = 0. These two terms may be dropped from (238).
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Furthermore, the second derivative of p̃ is related to the Brunt-Vaisala
frequency:

p̃zz = −ρ̃zg = −ρ̃
[
g
ρ̃z
ρ̃

]
= +ρ̃N2, (242)

which holds for each layer. Higher order terms result can be treated in a
similar manner. The dynamic interfacial condition may now be written as[

p̂1 − p̂2

]
z=0

+

[
p̂1z − p̂2z

]
z=0

η +
1

2

[
p̂1zz − p̂2zz

]
z=0

η2 + · · ·

+
1

2
ρ̃0

[
N1

2 −N2
2

]
η2 +

1

3!

ρ̃0

g

[
N1

4 −N2
4

]
η3 + · · · = 0, (243)

where ρ̃0 is mean density at the interface.
The restriction to Boussinesq flow merely implies that ρ̃ is now taken as

the constant, ρ0.

6.3 Amplitude equation

Define the following variables:

ξ = x− cpt, (244)

χ = ε (x− cgt) , (245)

ζ = ε2z, (246)

τ = ε2t, (247)

where cp and cg are constants to be determined later, and ε is a small pa-
rameter. Assume all variables depend now on ξ, χ, ζ, τ , and z.

The governing equations become

ρ0

[
(±U − cp) ûξ + ε (±U − cg) ûχ + ûûξ + εûûχ + ε2ûτ + wûz + ε2wûζ

]
= − [p̂ξ + εp̂χ] , (248)

ρ0

[
(±U − cp)wξ + ε (±U − cg)wχ + ûwξ + εûwχ + ε2wτ + wwz + ε2wwζ

]
= − [p̂z + ε2p̂ζ

]− ρ̂g, (249)
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(±U − cp) ρ̂ξ + ε (±U − cg) ρ̂χ + ûρ̂ξ + εûρ̂χ + ε2ρ̂τ +wρ̂z + ε2wρ̂ζ + ρ̃zw = 0,
(250)

ûξ + εûχ + wz + ε2wζ = 0, (251)

where the positive sign is used for the upper layer, and the negative sign for
the lower layer.

Introducing (244) into the kinematic interfacial conditions, (234) and (235),
gives

−
(
U + cp

)
ηξ − ε

(
U + cg

)
ηχ + ε2ητ

+

[
u1 +

(
u1z + ε2u1ζ

)
η +

1

2

(
u1zz + ε2u1zζ + ε4u1ζζ

)
η2 + · · ·

][
ηξ + εηχ

]
=

[
w1 +

(
w1z + ε2w1ζ

)
η +

1

2

(
w1zz + ε2w1zζ + ε4w1ζζ

)
η2 + · · ·

]
, (252)

(
U − cp

)
ηξ + ε

(
U − cg

)
ηχ + ε2ητ

+

[
u2 +

(
u2z + ε2u2ζ

)
η +

1

2

(
u2zz + ε2u2zζ + ε4u2ζζ

)
η2 + · · ·

][
ηξ + εηχ

]
=

[
w2 +

(
w2z + ε2w2ζ

)
η +

1

2

(
w2zz + ε2w2zζ + ε4w2ζζ

)
η2 + · · ·

]
, (253)

The dynamic condition, (243), becomes[
p̂1 − p̂2

]
z=0

+

[(
p̂1z − p̂2z

)
+ ε2

(
p̂1ζ − p̂2ζ

)]
z=0

η

+
1

2

[(
p̂1zz − p̂2zz

)
+ ε2

(
p̂1zζ − p̂2zζ

)
+ ε4

(
p̂1ζζ − p̂2ζζ

)]
z=0

η2 + · · ·

+
1

2
ρ̃0

[
N1

2 −N2
2

]
η2 +

1

3!

ρ̃0

g

[
N1

4 −N2
4

]
η3 + · · · = 0. (254)

6.3.1 Reduced equations

The governing equations at each order have leading terms that allow the
reduction of the equations to one equation operating on the vertical velocity.
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The generic form is

ρ0

(
∓ U + cp

)
uξ − pξ = ρ0Q1, (255)

ρ0

(
∓ U + cp

)
wξ − pz − ρg = ρ0Q3, (256)

ρ0

(
∓ U + cp

)
ρξ − ρ̃zw = Q4, (257)

uξ + wz = Q5, (258)

where the Q’s are the collection of terms of lower order that appear in
each equation, different for each order. Eliminate p, u, and ρ by cross-
differentiated (255) and (256), then substituting with (257) and (258). The
result is(
∓ U + cp

)2

∇2w − ρ̃zg

ρ0

w =
(
∓ U + cp

)[
Q3ξ −Q1z

]
+

g

ρ0

Q4 +
(
± U + cp

)2

Q5z . (259)

Defining

N2 = − ρ̃zg
ρ0

, (260)

Then (259) becomes(
∓ U + cp

)2

∇2w +N2w =
(
∓ U + cp

)[
Q3ξ −Q1z

]
+

g

ρ0

Q4 +
(
∓ U + cp

)2

Q5z . (261)

6.3.2 Linear stability

The most general form for a disturbance that can meet the interfacial con-
ditions is

w11 = A1e
i
(
mξ−n1z

)
+B1e

−i
(
mξ−n1z

)
+ C1e

i
(
mξ+n1z

)
+D1e

−i
(
mξ+n1z

)
, (262)

w21 = A2e
i
(
mξ−n2z

)
+B2e

−i
(
mξ−n2z

)
+ C2e

i
(
mξ+n2z

)
+D2e

−i
(
mξ+n2z

)
, (263)
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where the terms in (262) containing A1 and B1 are incident upon the interface
from z = −∞, while the terms in (263) containing C2 and D2 are incident
from z = +∞.

If the incident waves in each layer are supressed, then this linear solution
is

w11 = C1 (ξ, ζ, τ) ei
(
mξ+n1z

)
+D1 (ξ, ζ, τ) e−i

(
mξ+n1z

)
, (264)

w21 = A2 (ξ, ζ, τ) ei
(
mξ−n2z

)
+B2 (ξ, ζ, τ) e−i

(
mξ−n2z

)
. (265)

The interfacial conditions result in(
U − cp

)
C1 +

(
U + cp

)
A2 = 0, (266)(

U − cp
)
D1 +

(
U + cp

)
B2 = 0, (267)

n1

(
U + cp

)
C1 − n2

(
U − cp

)
A2 = 0, (268)

n1

(
U + cp

)
D1 − n2

(
U − cp

)
B2 = 0. (269)

In matrix form, these are
(U + cp) 0 (U − cp) 0

0 (U + cp) 0 (U − cp)
n2(U + cp) 0 −n1(U − cp) 0

0 n2(U + cp) 0 −n1(U − cp)



A2

B2

C1

D1

 = 0.

Setting the determinant of this matrix to zero results in[
n1(U + cp)

2 + n2(U − cp)2

]2

= 0, (270)

Implying that the quantity inside square brackets is zero. The resulting equa-
tion is identical to equation (1.10) of Grimshaw [JPM, 1979], who considered
the same problem with constant N throughout.

The governing equation in each layer determine the vertical wave number
in each layer:

n2
1 =

N2
1

(U + cp)2
−m2, (271)

n2
2 =

N2
2

(U − cp)2
−m2, (272)

62



Combining (271), (272), and (270) gives

(U + cp)
2

√
N2

1

(U + cp)2
−m2 + (U − cp)2

√
N2

2

(U − cp)2
−m2 = 0. (273)

There are apparently two modes that satisfy (273), as outlined by Grimshaw
[JFM, 1979]. One mode has cp = 0.

Rearrange (273), take a square to eliminate the square root, expand, sim-
plyify, and rearrange to obtain(

cp
U

)3

−
[

1

8

N2
1 −N2

2

U2m2

](
cp
U

)2

−
[

1

4

N2
1 +N2

2

U2m2
− 1

](
cp
U

)
−
[

1

8

N2
1 −N2

2

U2m2

]
= 0. (274)

There are three solutions to this third-order algebraic equation. Note that
if N1 is assumed equal to N2, then the results of Grimshaw [JFM, 1979] are
recaptured.

One of Grimshaw’s modes was cp = 0; this is no longer a solution. As
a result, the equation does not reduce to a second-order equation, and the
results are not so easily obtained. However this same solution exists for a
nonzero value of cp, and corresponds to the unstable mode for the original
Helmholtz instability without a density jump. Note that with a density
jump, there is a long-wave instability, whatever the velocity difference. This
long-wave instability dissappears with the density jump.

6.4 Results from linear stability

The linear results are shown in figures 9 through 11. Figure 9 shows all
the roots of (274) for N1

N1
= 2, indicating all three solutions. Note that

the lower branch of cr corresponds to a zero value of ci, and is analogous
to Grimshaws mode with c = 0. All of these solutions do not satisfy the
radiation conditions. Figure 10 shows the same case, but only shows the
modes that do satisfy the radiation conditions.

Figure 11 gives the results with N1 = N2, identical to the constant N
case of Grimshaw [12], shown here for comparison. Grimshaw showed that
there are two modes, one with c = 0. The second mode can be seen in
figure 11. For kU

N
< 1

2
, this mode does not satisfy the resonance conditions,
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Figure 9: All complex wave speed with N2

N1
= 2

and for kU
N

> 1√
2

this mode is unstable (note the values of ci). Resonant

over-reflection for this mode occurs for 1
2
< kU

N
< 1√

2
.

This same behavior of the second mode exists when N is not constant, as
shown in figure 10 for N1

N1
= 2. There is a critical value of kU

N
of approximately

0.55 beyond which the flow is unstable. This critical value depends on the
ratio N1

N1
. Below this critical value, the results show resonant over-reflection.

Note in figure 10 That the lower branch of this second mode extends to kU
N

of zero, indicating over-reflection for very long waves. The second mode for
constant N does not satisfy the radiation conditions for such long waves, and
does not exist. However, the first mode does not exist for N1

N1
= 2, whereas

this first mode does exist for all long waves with constant N . Overall, the
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Figure 10: Complex wave speed with N2

N1
= 2

interval of wavenumbers for resonant over-reflection with the sudden change
in N is somewhat narrower compared to the case with constant N . Also note
that only modes with positive values of cr exist for the second mode.

A case where N decreases with the vertical is shown in figure 12 for N2

N1

= 1
2
. For this case, the interval for resonant overreflection is much reduced,

as the critical value of kU
N

is now approximately 0.275. Furthermore, the
wavespeeds for the second mode are all negative, opposite the case with N
increasing with the vertical.
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= 1
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7 Numerical simulation of mountain waves

with rotation

The third continuing task is treating the effects of the Earth’s rotation on
a field of mountain waves, in collaboration with T. R. Akylas. The work
is aimed at verification of a recent theoretical result of Akylas and his as-
sociates. The computation is very challenging, as the physical scale of the
computation must be very large, to include the mountain wave effects in the
far field, yet must also accurately determine the flow directly over the moun-
tain. In order to achieve these disparate scales, a pseudo-three-dimensional
approach is employed, where the out-of-plane velocity is non-zero, but does
not vary in this third direction. Also, the domain is rectangular, and the
mountain is included with an artificial velocity boundary condition. For
mountains of small height, the results have accurately reproduced Long’s
solution. However, A test case is shown in figure (13).

However, as the mountain height is increased to the value where nonlinear
effects are important, the artificial boundary condition becomes unstable. A
nonlinear version of the boundary condition has been implemented, but also
is unstable. Promising results are just now being found with a version of the
immersed boundary method.
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Figure 13: Mountain waves with rotation
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8 A vortex pair impinging on the interface

The tropopause is associated with a sudden change in the buoyancy fre-
quency, which is a quantity that is intimately related to internal waves. As a
result, the complicated behavior that appears near the tropopause is usually
associated with internal waves, and probably usually is driven by internal
waves. However, other phenomena can be effect by this sudden change in N ,
and one important process is considered here: a vortex pair.

The tropopause may be a barrier for turbulence, as well as internal waves,
which may account for some of the observations. The simplest case of a
turbulent-like flow is a vortex pair. The vortex pair, or vortex ring in three
dimensions, will propagate with a fixed speed, raising the question as to
whether a vortex pair will reflect off of the tropopause in a manner similar
to internal waves.

To investigate this possibility, a vortex pair has been studied numerically.
The governing equations are the anelastic equations. The numerical method
is an explicit third-order Adams-Bashforth method, spectral in space. The
work was performed by a graduate student, Nicolas Jenkins.

8.1 Results

A vortex pair oriented to propagate vertically will move vertically with ap-
proximately constant speed. In a viscous flow, the vortex pair gradually loses
energy, but maintains it’s coherent form. In a stratified flow, a strong vortex
pair will act mostly like the constant-density case, however a weak vortex or
vortex pair will disintegrate into internal waves very quickly. In a viscous
stratified flow, an initially strong vortex pair will act like the constant-density
case until the pair has lost some energy, and then the vortex pair will disin-
tegrate into internal waves.

The research considered a relatively strong vortex pair such that the vortex
pair retains a coherent form. The pair was released below the interface and
allowed to impinge upon it. The results are shown in figure (14) for three
time steps, with the top figure the earliest time and the bottom the latest.
The top figure shows the vortex pair beneath the interface (shown with the
dashed line), the middle figure the pair has passed through the interface,
and in the third figure, the pair has returned to the interface. What happens
is that the vortex pair is trapped by the interface and winds up oscillating
through the interface. Note that in a layer of constant N , the vortex pair
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continuous to propaga upward until internal waves are created.
These results show that indeed the tropopause is a filter for certain scales of

vortical motion, not just internal waves. It is likely therefore that turbulence
is filtered by the tropopause, which may account for some of the observations.
These results will soon be submitted to The Journal of Fluid Mechanics.
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Figure 14: Contours of vorticity at three different times
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